A4の宇宙

数学と物理をA4ノートに収まる範囲で。

数学

円の面積の導出

概要 以前、弧の長さを用いて導出した等式、を用いて、半径を持つ円の面積を導出する。 導出 半径の円に内接する正角形と円に外接する正角形を考える。の場合を図に示す。 下図のように、円と正角形をを等分して考える。 まず二つの直角三角形と切り取られる…

x が0に近い時のsin x の性質 弧の長さを用いる方法

循環論法 以前、扇型の面積を挟み打ちしてを導出した。この手法は分かりやすいが、実は循環論法の問題がある。 半径を持つ円の面積がであることは定義されたことや自明なことではない。証明するには三角関数の積分が必要であり、その際に既にを知っている必…

xが0に近い時のsin xの性質 マクローリン展開を用いる方法

導出 以前導出したのマクローリン展開を書き下す。このマクローリン展開は無限の収束半径を持ち、本質的にと等しいのであった。 \begin{eqnarray} \sin x = x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots \end{eqnarray} として両辺をで割る。 …

指数表記された三角関数の手触りを確かめる

前回までに、オイラーの公式を用いて三角関数を指数関数形式で表せることを示した。 この形式でも三角関数としての性質が保たれていることを、いくつかの代表的な性質から確認する。 との指数関数表記を再度書く。 \begin{eqnarray}\sin x&=&\frac{e^{ix}-e^…

オイラーの公式から導かれる三角関数の記法

概要 オイラーの公式を受け入れると三角関数を別の形式で表せる。 導出 オイラーの公式を再度書く。 \begin{eqnarray}e^{ix}=\cos x+i\sin x\end{eqnarray} 式中のをに置き換えてみる。 \begin{eqnarray}e^{-ix}&=&\cos (-x)+i\sin (-x)\\&=&\cos x-i\sin x\…

オイラーの公式

概要 これまでにとのマクローリン展開を導出してきた。 のマクローリン展開\begin{eqnarray}\displaystyle \sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots\end{eqnarray} のマクローリン展開 \begin{eqnarray}\displaystyle \cos x=1-\fr…

e^xのマクローリン展開

概要 基準点をとしたテイラー展開は特に有用なことがあり、マクローリン展開と呼ばれる。のマクローリン展開を行う。 導出 を微分してを代入し、を求める。 まずである。 一階微分 \begin{eqnarray}f'(x)&=&e^x\\f'(0)&=&1\\\end{eqnarray} 二階微分 \begin{…

cos xのマクローリン展開

概要 基準点をとしたテイラー展開は特に有用なことがあり、マクローリン展開と呼ばれる。のマクローリン展開を行う。 導出 を微分してを代入し、を求める。 まずである。 一階微分 \begin{eqnarray}f'(x)&=&-\sin x\\f'(0)&=&0\\\end{eqnarray} 二階微分 \be…

sin xのマクローリン展開

概要 基準点をとしたテイラー展開は特に有用なことがあり、マクローリン展開と呼ばれる。のマクローリン展開を行う。 導出 を微分してを代入し、を求める。 まずである。 一階微分 \begin{eqnarray}f'(x)&=&\cos x\\f'(0)&=&1\\\end{eqnarray} 二階微分 \beg…

交代調和級数の収束判定

概要 調和級数の正負が1項ごとに入れ替わる、交代調和級数の収束判定を行う。 全項がプラスの調和級数は無限大に発散してしまったが、これは半分の項がマイナスなので、より収束しやすい級数と言える。 導出 足し合わされる数列の一般項をと書き、級数を代数…

ln(x+1)のマクローリン展開と収束半径 その2

概要 前回に続いて、のマクローリン展開(を基準としたテイラー展開)を計算する。 をマクローリン展開すると以下のようなべき級数で表せることを前回示した。 \begin{eqnarray}f(x)&=&x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots\\&=&\sum_{n=1}^…

収束半径の導出

概要 ダランベールの収束判定法を使ってテイラー展開の収束半径を計算する。 ダランベールの収束判定法(再掲) 級数が収束するかどうか、以下の式で判定できる。 足し合わされる数列が以下の条件を満たすとき、級数は収束する。 \begin{eqnarray}\lim_{n \to …

ln(x+1)のマクローリン展開と収束半径 その1

概要 基準点をとしたテイラー展開は特に有用なことがあり、マクローリン展開と呼ばれる。のマクローリン展開を用いて、収束半径の概念を説明する。 導出 を基準にしてのテイラー展開を行う。 を微分してを代入し、を求める。 まずである。 一階微分 \begin{e…

収束判定の例題

例題 を収束判定し、収束するならその値を求める。 この足し合わされる数列はでいきなり無限大に発散してしまうのでからの和とした。

調和級数の収束判定

の無限和、が収束するか考える。この無限和は調和級数と呼ばれる。 この数列は、明らかにを増加させるとだんだん小さくなっていくが、項を無限に足したら発散するかも知れない。 ダランベールの判定法 まずダランベールの判定法で収束するかを判定してみる。…

ダランベールの収束判定法

概要 ある数列を考えたとき、その級数(=無限和)は無限大に発散するのか、それともある値に収束するのかを確認したい。どうすればよいか? \begin{eqnarray}\sum_{k=1}^{\infty}a_n\end{eqnarray} 結論から言えば、数列が以下の条件を満たすとき、級数はどこ…

等躍度運動で分かるテイラー展開

テイラー展開の性質 無限回微分可能な任意の関数を、ある点の近傍では下記のようなべき級数で表してよい。これをテイラー展開と呼ぶ。 \begin{eqnarray}f(x)&=&f(a)+f'(a)(x-a)+\frac{1}{2!} f''(a)(x-a)^2+\frac{1}{3!}f'''(a)(x-a)^3+\cdots\\&=& \sum_{k=…

三平方の定理の証明

三平方の定理(ピタゴラスの定理)を証明する。 すなわち、上図のような直角三角形を考えたとき、 \begin{equation}a^2+b^2=c^2\end{equation} が成り立つことを示す。 証明 合同な直角三角形を下図のように4つ配置した場合を考える。 ここで大きな四角形は、…

自由落下運動を微分方程式で解く

物体が落下する時、どのような速度でどのような軌道をたどるかを微分方程式から導く。今回は空気抵抗を無視することにする。 まずは運動方程式を書く。物体の質量を、物体の加速度を、物体に働く力をとおく。 \begin{eqnarray}ma=f\end{eqnarray} 物体には重…

ヒポクラテスの定理

問題 図のように、直角三角形ABC、辺ABを直径とする半円、辺BCを直径とする半円、辺CAを直径とする半円がある。図の青い領域の面積はいくつか? 回答 ⊿ABCの面積と3つの半円の面積を計算する。 \begin{eqnarray}S_1&=&\frac{CA \times BC}{2}\\S_2&=&\frac{1…

タレスの定理の逆

タレスの定理の逆を証明する。 すなわち、∠Cを直角とする直角三角形ABCと、頂点ABCを通る円を考えるとき、図のように辺ABが円の直径になることを示す。 証明 辺ABの中点をPとし、点Pから∠Cに補助線を引く。 PCと平行に点Aから新たな補助線を引く。辺BCを延長…

タレスの定理

タレスの定理を証明する。 すなわち、図のような「直径ABに対する円周角∠C」が常に直角になることを示す。 円の中心Oから直角Cに対して補助線を引いた。 この時、辺OA、OB、そしてOCは全て半径なので同じ長さである。 そのため、△AOCと△BOCはそれぞれ二等辺…

薄い球殻の体積と直方体の体積

薄い球殻の体積を求めたい。 球殻は、中心を同じくする大きい球と小さい球とに挟まれた領域と言えるので、大きい球の半径を、小さい球の半径をとすると、体積は以下の式で表せる。 \begin{equation}V=\frac{4}{3}\pi (r+dr)^3-\frac{4}{3}\pi r^3\end{equati…

細い輪の面積と長方形の面積

細い輪の面積を求めたい。 輪は、中心を同じくする大きい円と小さい円とに挟まれた領域と言えるので、大きい円の半径を、小さい円の半径をとすると、面積は以下の式で表せる。 \begin{equation}S=\pi (r+dr)^2-\pi r^2\end{equation} 式を展開する。 \begin{…

指数関数の微分

指数関数を、変数で微分したい。微分の定義に従って代入する。 \begin{equation}y'=\lim_{h \to 0}\frac{a^{x+h}-a^x}{h}\end{equation} ここから指数関数の性質を用いて式を変形していく。まず右辺をで括る。 \begin{eqnarray}y'&=&\lim_{h \to 0}\frac{a^{…

ガチャ大爆死とネイピア数の関係

連ガチャ大爆死の確率 当たる確率1%の100連ガチャの爆死率 について以前書いた。では、当たる確率0.1%の1000連ガチャや、当たる確率0.01%の10000連ガチャの爆死率はどうなるだろうか?エクセルで計算してみる。 当たる確率1%の100連ガチャ \begin{equation}0…

対数関数の微分

対数関数を、変数で微分したい。微分の定義に従って代入する。 \begin{equation}y'=\lim_{h \to 0} \frac{\log_{a} {(x+h)}-\log_a x}{h}\end{equation} ここから対数関数の性質を用いて式を変形していく。 \begin{eqnarray}y'&=&\lim_{h \to 0} \frac{\log_…

100連ガチャ爆死の確率

ガチャ ☆5(当たり)が1%の確率で排出されるガチャを100連で回す。まあを100回引くんだから大体当たるだろう。 本当にそうだろうか?もしガチャでなくて100枚のクジならば、外れるたびに外れが減っていくので100回引けば1枚は必ず当たりである。しかしガチャで…

三項漸化式 特性方程式の解が複素数の場合

例題 以下の漸化式を特性方程式を用いて解き、を閉じた式で表す。 \begin{eqnarray}a_{n+2}&=&2a_{n+1}-2a_n\\a_0&=&3\\a_1&=&5\end{eqnarray}特性方程式は以下の形になる。 \begin{eqnarray}x^2-2x+2=0\end{eqnarray} 2次関数の解の公式を用いて特性方程式…

フィボナッチ数列の一般項

以下の漸化式で表される数列をフィボナッチ数列と呼ぶ。特性方程式を用いて、フィボナッチ数列の一般項を求める。 \begin{eqnarray}F_{n+2}&=&F_{n+1}+F_{n}\\F_0&=&0\\F_1&=&1\\\end{eqnarray} この漸化式の特性方程式を作るととなる。因数分解は容易でない…